=\ #TRUSTED CI

THE NSF CYBERSECURITY
\ CENTER OF EXCELLENCE

Open XDMoD First Principles Vulnerability Assessment

August 7, 2020

Draft Final Report
Distribution: Release to public after February 1, 2021

lan Ruh?, Elisa Heymann? Barton P. Miller®

! Student Researcher, iruh@cs.wisc.edu
2 Software Assurance Lead, elisa@cs.wisc.edu
3 Co-PI, bart@cs.wisc.edu

mailto:iruh@cs.wisc.edu
mailto:elisa@cs.wisc.edu
mailto:bart@cs.wisc.edu

About Trusted Cl

The mission of Trusted Cl is to provide the NSF community with a coherent understanding of
cybersecurity, its importance to computational science, and what is needed to achieve and
maintain an appropriate cybersecurity program?®.

Acknowledgments

Trusted Cl's engagements are inherently collaborative; the authors would like to thank the
XDMoD team, specifically Ryan Rathsam, for the collaborative effort that made this document
possible. The authors would also like to thank Ben Kinzer for his involvement in the initial steps
of this assessment.

This document is a product of the Center for Trustworthy Scientific Cyberinfrastructure (Trusted
Cl). Trusted Cl is supported by the National Science Foundation under grant 1920430. For more
information about the Center for Trustworthy Scientific Cyberinfrastructure please visit:
https://trustedci.org/. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

Using & Citing this Work

This work is made available under the terms of the Creative Commons Attribution 3.0 Unported
License. Please visit the following URL for details:
http://creativecommons.org/licenses/by/3.0/deed.en_US

Cite this work using the following information:

lan Ruh, Elisa Heymann and Barton P. Miller. “Open XDMoD First Principles Vulnerability
Assessment”. TrustedCl: The NSF Cybersecurity Center of Excellence. August 2020.

This work is available on the web at the following URL:
http://hdl.handle.net/2142/107785

* https://trustedci.org/mission

https://trustedci.org/
https://trustedci.org/
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://hdl.handle.net/2142/107785

Table of Contents

About Trusted CI
Acknowledgments
Using & Citing this Work
Table of Contents

List of Figures

Executive Summary

1 Overview
1.1 Background
1.2 Methodology

2 Overview of First Principles Vulnerability Assessment

3 Architectural Analysis

3.1 Attack Surface

3.2 REST API
3.2.1 Parallel REST APIs
3.2.2 Open XDMoD Log Management
3.2.3 Background Scripts

3.4 Generic Resource Manager Log Processing

3.5 Slurm Log Processing

4 Resource ldentification
4.1 Configuration Files
4.2 Accounting Log Files
4.3 Open XDMoD Logs
4.4 Temporary Files
4.5 Databases

5 Trust and Privilege Analysis
5.1 REST API
5.2 Accounting Log Processing
5.3 Access Privileges

6 Component Evaluation
6.1 Vulnerabilities Found
6.1.1 HTTP vs. HTTPS

10
10
13
13
14
16
18

18
18
18
19
19
20

20
20
21
21

21
22
22

6.1.2 Insecure Log Files
6.1.3 Denial of Service Vulnerability
6.2 Items to Improve
6.2.1 Outdated and Vulnerable Dependencies
6.2.2 Insecure Code Practice
6.2.3 Report Download REGEX Handling
6.2.4 Bug in User Profile Updating
6.2.5 Utility Script File Permissions
6.3 Places searched with no apparent issues found
6.3.1 Server Side Validations
6.3.2 User Input Sanitization
6.2.3 SQAL Injections

Appendices

22
23
23
23
24
24
25
26
27
27
28
28

30

List of Figures

Figure Page No.
Figure 1. Architectural Diagram: General View 9
Figure 2. Architectural and Resource Diagram 12
with Privilege Information for the REST API
Figure 3. Architectural and Resource Diagram 15
with Privilege Information for Generic
Resource Management Systems
Figure 4. Architectural and Resource Diagram 17

with Privilege Information for the Slurm
Resource Management System

Executive Summary

Trusted Cl assessed the security of Open XDMoD, an open source tool for the management of
high performance computing (HPC) resources, in collaboration with the XDMoD team. Open
XDMoD provides a web portal for graphical analysis of the performance of HPC environments,
and provides the backend infrastructure for importing and processing of accounting logs from
local resource management systems (LRMS).

We conducted an in-depth vulnerability assessment of Open XDMoD by applying the First
Principles Vulnerability Assessment (FPVA)> methodology. The FPVA analysis starts by mapping
out the architecture and resources of the system, paying attention to the trust and privileges of
components, and identifying the high value assets. From there we perform a detailed
inspection of the parts of the code that have access to the high value assets.

We assessed Open XDMoD using a Docker container provided by the Open XDMoD team and a
CentOS 7 VM with Open XDMoD installed. Specifically, we assessed the 9.0 version branch of
the Open XDMoD repository as it was on March 27, 2020, but the branch continued to be
developed while the Open XDMoD team worked towards the 9.0.0 release. The assessment
covered the core code for the REST API, including the code for authentication, authorization,
database access and database modification, and for the importing and processing of accounting
log files. We collected the results from each step of applying the FPVA methodology, generated
vulnerability reports and delivered them to the XDMoD team, and released this final report to
the Open XDMoD team at the end of the engagement. Open XDMoD also includes an optional
module to incorporate SUPReMM, a job performance monitoring tool that is also developed by
the Open XDMoD team. Due to the length of this engagement, this module was not explored
for this assessment.

This report includes a discussion of the vulnerabilities found, several non-security related bugs,
and the parts of Open XDMoD that were inspected where no apparent issues were found. The
parts where no issues were found included the majority of the code for performing SQL queries
to the data warehouse, checking the authorization of requests from the REST API, user
authentication, and sanitizing user input. Though it is impossible to certify that code is free of
vulnerabilities, we have substantially increased our confidence in the security of those parts of
the code.

We found three security vulnerabilities during our assessment. The first vulnerability is that use
of HTTPS over HTTP is not mandatory (though it is suggested in the documentation).

® James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann, “First Principles Vulnerability Assessment”,
2010 ACM Cloud Computing Security Workshop (CCSW), Chicago, IL, October 2010.

Communicating over unencrypted channels exposes all information sent between the client and
the server, including cookies and passwords. Second, Open XDMoD was found to be logging
sensitive information to a globally readable file. Third, a DoS attack was possible by filling all the
free space on a disk partition containing Open XDMoD’s log files, causing the web portal to
become inoperable. Additionally, the assessment found that OpenXDMoD relies on three
software dependencies that are either unmaintained or out of date. All the security issues
found, as well as non-security related bugs, are detailed in Section 6.

1 Overview

This document describes the engagement between Trusted Cl and Open XDMoD that occurred
from March to August 2020. The goals of the engagement were to evaluate the technology and
architecture of Open XDMoD and perform a code-level security review of the Open XDMoD
software.

1.1 Background

Open XDMoD is an open source system for monitoring the performance and utilization metrics
of HPC systems. Open XDMoD provides a web application that is accessible to individual users
and to institutional managers to analyze and explore metrics via interactive charting and
guerying. Without dependencies, Open XDMoD is approximately 130,000 lines of code, of
which 72,000 are PHP, and 44,000 are JavaScript. The remaining code is a mixture of JSON,
Markdown, CSS, HTML, SQL, Java, and other utility languages or formats.

1.2 Methodology

This engagement focused on performing FPVA on Open XDMoD. The engagement for Open
XDMoD started on March 27, 2020 when we received a Docker container from the Open
XDMoD team. We assessed the 9.0 version branch of the Open XDMoD repository as it was on
March 27, 2020, but the branch continued to be developed while the Open XDMoD team
worked towards the 9.0.0 release.

We used both the docker container provided by the Open XDMoD team and a CentOS 7 VM
installed with Open XDMoD. The docker container was used during the creation of the
architectural diagrams. However, as the docker container was configured such that many
processes ran with higher permissions than in a normal install, to perform the trust and
privilege analysis step of the FPVA process (detailed in Section 2), we created a minimal CentOS
7 VM installed with Open XDMoD, according to the installation instructions in the
documentation, that better reflected a production environment.

Due to limited time and resources, our FPVA assessment did not include the optional
SUPReMM module, which is also developed by the Open XDMoD team.

2 Overview of First Principles Vulnerability Assessment

First Principles Vulnerability Assessment (FPVA) is an analyst-centric (manual) methodology that
aims to focus the analyst’s attention on the part of the software system and its resources that
are most likely to contain vulnerabilities that would provide access to high-value assets. FPVA
finds new threats to a system and is not dependent on a list of known threats. The FPVA
methodology consists of five steps for evaluating a given piece of software.

1. Architectural Analysis: determined the major structural components of the system and
how they interact. At this point, we produced Architectural Diagrams that illustrate the
structure of the system. The primary deliverables of this step were the processes and
hosts, and their interactions, as shown Figures 1, 2, 3, and 4.

2. Resource Identification: identified key resources accessed by each component.
Examples of these resources include files, databases, logs, and devices. The Resource
Diagrams that we produced illustrate these resources and their connection to system
components. The primary deliverable of this step was the addition of the resources
shown in Figures 1, 2, 3, and 4.

3. Trust and Privilege Analysis: identified the trust assumptions about each component,
answering such questions as how are they protected and who can access them?
Associated with trust is describing the privilege level at which each executable
component runs. The artifact produced at this stage is a further labeling of the basic
diagrams with trust levels and labeling of interactions with delegation information.

4. Component Evaluation: examined relevant components in depth. A key aspect of the
FPVA methodology is that this step is guided by information obtained in the first three
steps, helping to prioritize the work so that high value targets are evaluated first. Any
vulnerabilities identified result in the production of a comprehensive vulnerability
report that is disseminated to the requesting parties. All work done during this step was
logged for inclusion in the final report.

5. Dissemination of Results: we created a report for each vulnerability found that was
then delivered to the development team as it was completed. We prepared a final
report that includes the deliverables mentioned above as well as an outline of the work
completed. We include identified bugs as well as areas that have been investigated but
where no bugs or vulnerabilities were found. We then disseminated the final report to
the requesting parties (i.e., the lead of the development team).

We note that Open XDMoD is a large software system, so no time-limited assessment activity
will be able to find all possible sources of insecurity. Regular assessments of the software will

help maintain its security. In addition, Open XDMoD relies on a variety of software
dependencies. As such, there should be ongoing attention to the security of the external
software that Open XDMoD relies on.

3 Architectural Analysis

Based on our study of the Open XDMoD documentation®, testing environment, and code, we
identified the attack surfaces, core processes, and hosts. Figure 1 shows the overview of the
Open XDMoD architecture. Figures 2, 3, and 4 show the detailed architectural diagrams.

Figure 1 shows the three groups of processes that perform the core function of Open XDMoD.
The first group consists of the processes created by Apache to handle each request to the REST
API. The second group consists of the shredder and ingestor processes that import the
accounting logs and process the logs, respectively. These processes can be launched manually
from a shell or, in a normal production configuration, from cron. The third group consists of
background processes that perform periodic tasks including generating reports and exporting
data.

The accounting log files from multiple resource managers can be processed by Open XDMoD,
however, the mechanism for processing the accounting logs from Slurm differs from that of
processing the accounting logs of other resource managers and is therefore separated into its
own diagram. We elaborate on our findings in the following subsections.

6 https://open.xdmod.org/8.5/

150H ajoway

poLpX D |osAw ayoede 1004 _H_

POWPX JO UIWpPE _H_ _

sidusg

Wz UoEIIoU PUSS "BD
punoibyoeg

s)duas punosfiyoeq
YOUneT "2

Buissaooid

pue podw BlEg

ejep Gujunoooe
arsEY 20 ‘e

1
!
N0p3S "1y |

9 5 “ sassaooid
| H : 2100 YIUNET "1D gy
uolaz 0 18MBS
lI2Us sowsy J

1sanbal

nop3s |ayg gy | | I18US al0way 'Ly

BIEp PAPPSIUS WM ED 'tV

Sa5eqelRq

A aa

peal asEqEIREN

alys
BIED JBSN SN PN - o

s1871043U0)

dLIH $03sN)/¥a115

ULPIS IBAD X3|IS WL}
asuodsal a0y 5N

S82MES 1L IH
Y2UNET "2

ayoedy

P

(“asuodsal 41 1H ‘on

1SOH 1803 S3UBIN

uwpy
WSID
wai) rew3
I1sanbal ..E..
350 0V
150H suiwpy

(1senbai dL1H “In

v

¥

Jawnsuon
12SM0J il
Aued pig ERE
150H 585N
isansal
1850 °0N
1350

MBI/ [eJauen :welbeiq [einjosuyaiy

ujwpe

Jasn

1BUMO/IBSM

Inop3s
<}

184208 dOL Jo
|0a0j0id TOSAN
R e —
UOIEIIUNWIWOD
Womap 1Byl
-—
SdLIH/dLIH

UolESID §S3001d

5oy
passasseun

150H

$9553001d

Jo dnoig

$52300Id

Jasn

iew

General Vi

Figure 1. Architectural Diagram

3.1 Attack Surface

From the Architectural Diagrams, we identified the following points on the attack surface:

e Open XDMoD Web Portal: the interface used by both regular users and administrative
users for accessing the accounting data. Through the web portal they can make queries,
export data, and create reports.

e Open XDMoD REST API: facilitates the web application’s access to accounting log data,
and allows for the manipulation of access control lists (ACLs).

e Open XDMoD log files: Open XDMoD and its dependencies write to several log files in
/var/log/xdmod/. The log files can be written to by both Apache and the Open
XDMoD REST API, as seen in Figure 2.

e Accounting log files: files from the LRMS are processed and stored in the data
warehouse to be accessed from the REST API. The accounting log files are shown in
Figures 3 and 4.

e Command line interface: perform specific tasks that affect Open XDMoD, such as
shredding and ingesting log files.

e Configuration files: Open XDMoD uses a large number of configuration files that specify
application parameters such as user host, database host, port and password, and define
the extract, transform, and load (ETL) pipeline that processes the accounting logs. The
configuration files can be seen in Figures 2, 3, and 4.

3.2 REST API

Open XDMoD uses two different methods for handling requests to the REST API, as shown in
Figure 2. Open XDMoD relies on the PHP framework Silex’ for part of the REST API and uses
custom PHP scripts for the other endpoints. Each endpoint consists of the requested path and
the HTTP method associated with the request. The Apache web server receives incoming HTTP
requests and routes them to the appropriate PHP file. It launches a new process for every
request, resulting in either an instance of a Silex application or an instance of a custom REST
controller, depending on the requested route. The controller handles the routing and
authentication for each request. The Silex application receives the requests made to rest/
routes, whereas the custom REST controllers are used when a request is made to one of the
PHP filesin html/controllers/. Details of these two routes are elaborated in Section
3.2.1.

7 https://silex.symfony.com/

10

https://silex.symfony.com/

Both Open XDMoD and Apache are configured to log to files in the /var/log/xdmod

directory. Entries to the files are made in exceptional circumstances to log error messages and
in the normal operation of the system. Open XDMoD uses the 1ogrotate? utility to manage
log files over time. The function and configuration of Logrotate is detailed in Section 3.2.2.

Each of the endpoints for the REST API perform a different operation. An endpoint may query
or modify entries in the data warehouse or it may launch a new process. Users are able to
create reports that are populated with data from the data warehouse. They can configure
reports to be sent out periodically by email or they can create one time reports to download.
Open XDMoD uses the JasperReports Java library to create the PDF and Word files of the
reports. When a user requests a report, the server first launches PhantomlJS to construct the
images of the charts, then launches the ReportBuilder Java program to create either a PDF or a
Word version of the report. The PhantomJS and ReportBuilder operations are also performed in
the background when a report is configured to be sent periodically. In that case, the processes
are launched by the Report Manager background script, which is explained in Section 3.2.3.

& https://github.com/logrotate/logrotate

11

https://github.com/logrotate/logrotate

TIPS OB 43T PALPX

“sbio) ey ssea0e (iedeuew) men paliapnuid e 1 Ajuo sinseg 20

"UOGRI ¥ SHIRSURGE JBSN T I AIUC N3O0 EZMPL I

~partiax uaeq =y =IEp p3Paca ay) PUB LOGKR LINET B PSISaAbal 52U SBEN B) SIN9%0 61
80 semopsed A= Uy N300 Lu0p £ dars io) MLy

saloN
— e
{ smbevew woda | ——————— I[meepeddwewmggy
| o youne])
0 T8 50091 PU9S TED | 3082 105 S
s Il || oo o 20D || W00t || 4 sapLIIBLIOG o S ||+ snumiueys so14 suodg wp - beuO6rmpon SIaT11 U
safieupu Hodo! + Qe e)
A LT 52D " soq obewy dwo, S0 lewn ®€ T ey
{peod0gD G P #E0 : H i : :
e ep ®iBp 103N EyED Jasn pear i peal -
UorSIaN ISSTE 843 BNEIRY 2D wopuinbyuoo | pcdéo peow . e | SSEUREQ sseqEiEq : eseqereg
) PROMEMN PN |PROHEN 1 win'sn:isintan o WA i ein'n an'in
LO{SIaA 1530E| ay) 1Sanbay . B H : : H
R e U s suodos sopis : : :
ap une 129 0190 720 DENY £2N0 zn |
- |
i qEo sond _ b
POWRE FERH LD B0 pessadwion Babton
.“ T | sAounipuAsy
i 810910 'ELD B safito) pou
Bog s BRuRWUHESIS UKD 02D 9136 yauner] 1D <l
BopobruBLuOSas pISSadu0I s - S b e
oy ieBEUEW UGiSSas PRAY oo aqe30abe) e
£l
oy juo
orei0.50| PED ‘€D & APOPI 30 KIS WK
suodsal anEoau LN i
‘iepeay sanbal o 2N L J o —
6oy ssacae.ayaede peal £0 _
‘ssuodsas dLIH 92) 150H HIARS SHIDW

—wﬁ%&a:x n .d
L] 1

sBwnsuag

pirie NG G

_ W EwE

. s ss060

500N

IdY 1S3Y 10} uopewoyu| aba|iald yum
swelbelq 82In0sey pue [eINaNyaIy

NPT B

1504
pessassEun

B
=30

th Privilege Information for the REST API

lagram wi

Figure 2. Architectural and Resource D

12

3.2.1 Parallel REST APIs

Open XDMoD uses two mechanisms for providing the REST API that is used by the Open
XDMoD web portal, as shown in Figure 2. The primary mechanism is through the Silex HTTP
framework, which handles routing of requests to registered request handlers. The other
mechanism, based on our conversations with the developers, is a legacy API that is being
transitioned to Silex and relies on Apache to route requests to specific PHP scripts.

Both APIs provide endpoints for user authentication (login and logout), though only the Silex
endpoints are used in the Open XDMoD web portal. Other functionality for the web portal is
split between the two mechanisms. All the operations for the internal dashboard (a dashboard
available only to managers that allows user management, account creation, and system
management) are performed using the custom HTTP controllers. An outline of the partitioning
between the mechanisms is shown below.

Silex
e Query the data warehouse.
e |nitiate and download a batch export.
® Manage queries for the metric explorer.
e Manage dashboard layout.
Custom HTTP Controllers
e Update user password and profile.
® Request reset password email.
e Manage available filters for the metric explorer.
e Send email messages on behalf of users from interactions with the “Contact” and “Sign
Up” web portal features.
® Manage the set of available charts for use in a report.
e Create and edit reports to be sent periodically.
Both
e User login and logout.

3.2.2 Open XDMoD Log Management
There are five log files used in the /var/log/xdmod directory. Of those, four are written to
by Apache, and three by the PHP request handlers.

The logrotate utility is used to manage the growth of the logs over time. When

logrotateisinstalled, a crontab entry is added /etc/cron.daily/logrotate torun
logrotate daily by default. When logrotate launches, it reads the

13

/etc/logrotate.d/xdmod file that defines the operations to be performed on the Open
XDMoD log files. All the files are compressed by gzip and renamed with the date for storage.

3.2.3 Background Scripts

Open XDMoD comes with three background scripts configured to run periodically, the update
checker, report manager, and export manager scripts. All three are launched by cron at the
times defined in the /etc/cron.d/xdmod file.

The update checker background script runs monthly by default and checks the version of Open
XDMoD running locally to compare it against the “latest version”. The University at Buffalo
Center for Computational Research (the Open XDMoD development team) Open XDMoD
instance is used as the source of truth in determining what the “latest version” is. The script
makes a request to https://xdmod.ccr.buffalo.edu/rest/v0.1/versions/current to retrieve the
latest version.

The report manager script is run by default at 03:00 daily. It determines the reports that are
configured to be sent out that day by checking the moddb . Reports table. It then queries the
data warehouse for the requisite data. Similar to the operations performed when a report is
generated at the request of a user using the REST API, PhantomJS and the ReportBuilder
programs are launched to construct the charts and the PDF or Word file. When the report has
been constructed, the report manager sends the report as an email to the configured user(s).

When a user requests a batch export of data from the data warehouse, the data is not
immediately gathered. Their request is added to a table and is handled by the export manager
script at a later time. The export manager script is configured by default to run at 04:00 daily. It
checks the moddb .batch_export_requests table for any outstanding requests. For each
request, it retrieves the data from the data warehouse, compresses the data to a zip file, and
writes the file to the configured export directory, which is /var/spool/xdmod/export by
default. The user that requested the export is sent an email notifying them that the export is
ready for download.

14

https://xdmod.ccr.buffalo.edu/rest/v0.1/versions/current

150 ajowsy

POWPX IO UNLpR L powpx (| bsAw aysede
“BIEP PAZIEWIOU PRAY “£1 i
EIEP PSZEWIOU S, 91 JappRIYspou qpadyTpow pow 1263668 Mpou 5193714 HpOR
elep Duibels peay | s34 sai4
“ejep Buibels alum w1 ,m, oD RIE] .
BJED PAPRRILS By} PEAY €L <} & i A A A A
sa|y Byuoo soj} Byuoo g g
pedY 9 pEay L1 91 L
- . v asr M 8L
wn - A iam gi
ot)| e
peoy 21 Y 5 Bep & my
aseGEEp |
Sl ; 18pPAIYS O
[SO0y 2m 8
JppaIYS-pouPK |- - 5 e80T pou
] Buibbo

SADLIOH ‘E

JreTp———

o) Goj peay "L
Juks
1504 210W3) [
woy s3jy N
i
|

Suks s youne g oy

powpx peay ‘L
N0pS JIAUS 02

qejuo.s — O FETVETSS
e cowon IBYS Aowar

A
1sanbal |sys
‘sloway "qp

] J03s86uy
| -poupx youne ‘ol

n9p3s ‘6L

apy dnosb 5,50

ay) peay

I

e

a
dnof

1SO0H Jenss salisi

7

T jsenber " eus eowey
1850 "ED
JSOH S.unupy

wand

swaisAs Juawabeueyy aoinosay
o1IauUaY) 10} uonewlou] abajiALd yum
sweibelg 20in0say pue [EAN}OANYIIY

1004

woe 7]
sumQpBsn

—
nop3s

<
194905 dDL 10
000104 TOSAN
——
UONESIUNWOT
WOMIBN JBUI0
—
SdLIH/dLLH
UoIER.]) 558001d
——————
SpM/PESY 8l

ung
passassaun

1S0H

_ S855300id

Jo dnoiny

S53904e

Figure 3. Architectural and Resource Diagram with Privilege Information for Generic Resource

85N

(]

Management Systems

15

3.4 Generic Resource Manager Log Processing

Figure 3 shows the processing of log files from a generic resource manager and the loading of
the information into the data warehouse. The shredder and ingestor processes can be initiated
by either cron or by a system administrator manually executing the scripts from a shell on the
host system. The blue and purple backgrounds in Figure 3 indicate that either a system
administrator or the xdmod user (used by cron when running the processes) owns the process
or file. In either case, the xdmod-shredder script is run to process the accounting logs from the
resource manager.

Once the shredder has finished loading the logs into the mod_shredder database, the
xdmod-ingestor script is run to move the shredded logs through the data pipeline into the data
warehouse.

When configuring Open XDMoD, it is left up to the system administrator to determine the
mechanism that will get the accounting log files from the local resource management system
node to the metrics server host. Though not explicitly specified in the documentation, based on
communication with the developers, this normally happens one of two ways: using a cron job
configured to run rsync to transfer files from a remote host periodically, or accessing the
accounting log files through a shared file system.

16

powpciouwoe ||| powpx || pbshw auoede
BIEp PIZBULOU PEBY L
"BIEP PAZIPULIOU 3IUM ‘8L ; . Aardde
ejep Gubeis peay L1 534 S84 JAppRIYS” PO apaxdy”pour mpour amBarids” mpom IR0 M PO
eiep Duibiels alum ‘9L o) s
"EEP PEPPRILS AU PEBY G1 & & a g a] &
sy Byuoo saiy Gyuco : :
pEsH £ 13 Pesk vl sLiskia CI T
T H 2SNOYAEMEIED UM DT
" eiep pajeBaibie awm 0z
sail) Byuoo wEP JB1I} NUM 0Z
- a1y Bor | peausL
ajy boj Areodws)
esuodsay Aresoduiat awm 8 peay 6 BSEQE|ED J9PRBIUS :
g o1ut ol 213t 01 i
850ipow
S e
1120 Odt '§ - Dudfcy

e | -powpx youne "zl
i { ﬂ = e
[8BRS .
] iy siowey o dnoib 5.0 |_dnois
qewon 4 aypeayg) L
1sanbes joys
B0 1wopis 13US 22 ol

1SOH JAMBS SOUIBIN

“““““““““ wan
[eanber *| 1aus aowey
osn B0
150K Sy

yduog sadjaH win|s
10} uopewuoju| abajjald yum
swieibelq 221n0say pue [eAN}OAUYDIY

W upupe
JBUmMOIesN

-—
moms

<
184008 4D L 10
1030i0.d TOSAN

—
Uonealunwwos

SIOAIBN SO

-
SdLIHIdLIH

B
UOIERID) 558301

P —
| peay a4

ﬂ
~

104
pOSSasSEUN

H

59553001

Jo dnoigy

E

ﬂ
=50

v

17

ith Privilege Information for the Slurm

Resource Management System

Figure 4. Architectural and Resource Diagram w

3.5 Slurm Log Processing

Figure 4 shows the processing of accounting logs from the Slurm resource management system.
The process follows a similar path to a generic resource management system. However, in the
mechanism for the retrieval of the logs, rather than directly processing a log file, the
xdmod-slurm-helper script uses the sacct (Slurm Accounting) utility provided by Slurm to
retrieve the accounting logs from the cluster and then write the data to a temporary file. That
file is then processed through the same mechanisms as a generic resource manager’s log files.

4 Resource ldentification

From the architectural and resource diagrams in Figures 2, 3, and 4, we were able to identify
critical resources for further investigation, including configuration files, accounting log files,
Open XDMoD log files, temporary files, and databases. Each of these is elaborated in the
sections below.

4.1 Configuration Files

Open XDMoD has around 500 configuration files, most of which are in the /etc/xdmod/
directory, with additional configuration files for cron and logrotate in /etc/cron.d/ and
/etc/logrotate.d/ respectively. The primary config file is
/etc/xdmod/portal_settings.ini, which defines the web portal’s base URL, the
name of log files, the host, port, user name, and password for all the databases, and other
settings. The ETL pipeline for processing accounting logs is defined by a set of JSON files stored
inthe /etc/xdmod/et1l/ directory.

All the config files, including the ones in /etc/xdmod/, /etc/cron.d/, and
/etc/logrotate.d/, are owned by root and have permissions of 644 /-rw-r--r--,
except the portal_settings.ini file which has permissions 0440 /-r--r-----)

4.2 Accounting Log Files

The accounting log files are one of the primary resources in the system. When a user of a
cluster submits a job to the LRMS, a log of the job and its properties is created. Open XDMoD
uses the logs generated by the LRMS to gather the accounting information stored in the data
warehouse and shown in the Open XDMoD web portal.

Depending on the LRMS being used, there are two different mechanisms that are used to get
the accounting logs into the data warehouse, as shown in Figures 3 and 4. For a generic LRMS,

18

the process by which the accounting log files are moved from the cluster to the Open XDMoD
metrics server is not specified. Based on our communications with the Open XDMoD
development team, a normal installation may use rsync to transfer between the hosts on a
periodic basis, or use a shared file system between the cluster and the metrics server. In both
cases, it is left up to the user to ensure that the files are moved securely.

If Slurm is the LRMS being used by the cluster, then Open XDMoD provides the
xdmod-slurm-helper script to facilitate retrieval of the accounting logs. The helper script
uses the sacct utility to retrieve the logs from the cluster and writes them to a temporary file.
This file is immediately ingested and follows the same process as the generic LRMS log
processing.

4.3 Open XDMoD Logs

Open XDMoD and Apache write to five log files in the /var/log/xdmod/ directory. Log
entries may be written in during exceptional circumstances or during the normal operation of
the system. The files and their contents are outlined below.

e apache-access.log: every time a request is made to Apache, an entry is logged
containing the timestamp, HTTP method, route, and client information. This file is only
written to by Apache. This log was one of the files used to create a DoS attack, detailed
in Appendix C.

e apache-error.log: thisfile is written to when a request causes Apache to throw
an error. This file is also one of the files used to create a DoS attack, detailed in
Appendix C.

e exceptions.log: thisfile is written to when unhandled exceptions are caught at
the top level of the Open XDMoD PHP stack.
query.log: this file is used to log queries made to the data warehouse.
session_manager.log: every time a request is made to the Open XDMoD REST
API, the metrics server attempts to verify the xdmod_token cookie belongs to a valid
session. When it queries the moddb database, it also logs the query to this file. This was
the source of the vulnerability detailed in Appendix B.

4.4 Temporary Files

Open XDMoD writes temporary files to the system’s temporary directory, as determined by the
PHP sys_get_temp_dir function. When Open XDMoD builds a report to be sent out by
email, or downloaded through the web portal, the charts are generated as images by
PhantomlS, which are stored as files in the temporary directory. Additionally, a temporary file

19

containing the accounting logs output by the sacct utility is written to the system’s temporary
directory when the Slurm helper script is executed.

4.5 Databases

Open XDMoD uses multiple databases for storing the accounting logs in the data warehouse,
for storing user information, and for storing log messages. The databases can be seen in Figures
2, 3, and 4, and the purpose of each is described below.

e mod_shredder: stores data that has been retrieved from the resource managers but
not yet normalized.

e mod_hpcdb: stores normalized data that has not yet been loaded into the data
warehouse.
modw: data warehouse.
modw_aggregate: stores aggregated data from the data warehouse to speed up
response times for certain queries.

e modw_filters: stores filtered data from the data warehouse to speed up response
times for certain queries.
mod_Tlogger: stores log messages from the data shredding and ingestion processes.
moddb: stores user data, session keys, some configuration information.

5 Trust and Privilege Analysis

There is implicit trust in any process running as root or any resource owned by root. Any
communication from an unprivileged process to a privileged process needs to be investigated,
and any data read in from a resource needs to be validated.

5.1 REST API

Open XDMoD has five default authorization levels that can be assigned to registered users, and
one special public user level that is assigned to any unregistered user. These levels, in order of
increasing permissions, are public, user, principal investigator, center staff, center director, and
manager.

When a user or a third party makes an HTTP request to the Open XDMoD REST API, the request
is validated using the xdmod_token and PHPSESSID cookies. If these cookies are not
present or cannot be verified then the user is assigned the public user role. Open XDMoD uses
the cookies to authenticate the user making the request, and from that retrieves the data they
are authorized to access and the actions they are permitted to perform.

20

5.2 Accounting Log Processing

The Open XDMoD shredding and ingesting processes are created in two ways. By default, the
/etc/cron.d/xdmod file is configured so the processes are run by cron using the xdmod
user ID (shown in purple in Figures 1 through 4). However, Open XDMoD also allows any user ID
belonging to the xdmod group to run the background processes (shown in blue in Figures 1, 3,
and 4).

The ability for a user to run either the shredder or ingestor processes is dependent on the
ability of the user to read the necessary configuration files, not on the permission bits
associated with the executables. All the background scripts’ permission bits are
0755/-rwxr-xr-x, so any user can run the executables. However, the programs fail when
they attempt to read the configuration files that store the database connection metadata (host,
port, user, password), unless they are in the xdmod group.

5.3 Access Privileges

We note that there are two different mechanisms for controlling access to the Open XDMoD
portal and its resources: the user authorization provided by the REST API described in Section
5.1, and the authorization for running the scripts described in Section 5.2. The authorization
control provided by the REST APl is managed through the Open XDMoD web portal by a
manager, whereas the authorization to run the scripts is dependent on the user ID’s
membership to the xdmod Linux group (based on editing the contents of the system
configuration file /etc/group).

Similarly, there are two different mechanisms for authenticating with Open XDMoD. The user
accounts stored and managed by the REST API provide access via the web portal, and the Linux
user ID’s managed by the operating system provide access to the Open XDMoD background
scripts and backend resources.

6 Component Evaluation

This section describes some of the areas of focus for the component analysis step of our
assessment. In this step, we performed code inspection looking for weaknesses that could be
exploited.

21

6.1 Vulnerabilities Found

6.1.1 HTTP vs. HTTPS
Summary
HTTPS should always be used over HTTP. The associated vulnerability report is in Appendix A.

Description

The default configuration of Open XDMoD does not encrypt HTTP traffic. This allows attackers
to monitor all traffic between the server and the client. As a result, passwords submitted on
login are sent in plain text, and the xdmod_token cookie can be stolen from any HTTP
request after authentication.

Mitigation

This can be mitigated by enforcing HTTPS on all traffic to/from the server. Apache should be
configured by default to allow only HTTPS and provide a self- signed certificate until the user
replaces it with their own. Also ensure that all cookies are sent with the “secure” flag. This flag
prevents cookies from being sent over unencrypted channels.

6.1.2 Insecure Log Files

Summary

The XDMoD software logs the session cookies for every request it receives in the process of
checking their validity. The file being logged to is globally readable and could allow an attacker
to hijack active sessions if they have an account on the metrics server host. The associated
vulnerability report is in Appendix B.

Description

Every time a request is made to the Open XDMoD API, the metrics server attempts to verify the
xdmod_token cookie belongs to a valid session. In querying the moddb database, the query,
and the parameters of the query (including the cookies being checked), are logged to the
/var/log/xdmod/session_manager . log file. This log file is globally readable. By
reading the log file an attacker can see any active session cookies and therefore be able to
impersonate any of the active sessions.

Mitigation

The log file can be secured by just changing the file permissions from the globally readable
0644 /-rw-r--r-- to the only group and owner readable 8640/-rw-r----- .

22

6.1.3 Denial of Service Vulnerability

Summary

Open XDMoD is vulnerable to a Denial of Service (DoS) attack that prevents proper functioning
of the Open XDMoD portal. The associated vulnerability report is in Appendix C.

Description

Every time a request is made to Apache, an entry is logged to
/var/log/xdmod/apache-access. 1log containing the timestamp, HTTP method, route,
and client information. By repeatedly sending requests (on any route) to Apache, an attacker
can fill up the free space on the file system partition. This results in the XDMoD web portal
failing to properly load due to the malformed page returned by the server. In addition to
XDMoD, any other programs that use the same file system partition as the log files may also be
affected.

Mitigation

One option to fix this vulnerability is to use the Apache feature of piped logs and the
Apache-provided rotatelogs utility, which allows continuous monitoring and control of file
size.

An additional mitigation is to isolate log files to their own file system partition. In the case that
these files grow to a large size, this will isolate the effect and reduce the impact. This approach
can be used with any other approach to add an additional layer of protection.

6.2 Items to Improve

6.2.1 Outdated and Vulnerable Dependencies

Summary

The current version of Open XDMoD has three problematic dependencies. Two of the
dependencies are unmaintained and the third is outdated and vulnerable (though it is not clear
if it is exploitable in Open XDMoD). The associated warning report is in Appendix D.

Description

Open XDMoD uses the no-longer-maintained HTTP framework, Silex, that had an end-of-life in
June of 2018. Although there are currently no publicly known vulnerabilities in Silex, the lack of
active development and maintenance increases the likelihood that vulnerabilities will not be
caught and will not be fixed. Open XDMoD also relies on PhantomJS, development of which has
been suspended, and which has a publicly known vulnerability. Additionally, Open XDMoD uses
an outdated and vulnerable version of the JasperReports Library Community Edition (where the
vulnerability reports are currently too terse to tell if they affect Open XDMoD).

23

Mitigation

Using actively maintained software lowers the risk of vulnerabilities going uncaught and
unfixed. In the case of Silex, the recommendation from the developers is to migrate to using
Symphony and Flex, which continue to be actively maintained and developed. As PhantomlS is
no longer maintained, it is recommended that an alternative be found with equivalent
functionality.

Keeping all libraries and frameworks updated to their most recent versions prevents numerous
vulnerabilities. Jaspersoft has fixed the known vulnerabilities in newer versions of
JasperReports Library CE.

6.2.2 Insecure Code Practice

Summary

XDMoD uses certain coding practices that, while not known to be exploitable at the moment,
are insecure and should be avoided.

Description

When authenticating a request, either from the session cookies or a provided user name and
password, XDMoD performs a query to select all entries from the database that match the
given credentials. This operation returns a list of entries, not necessarily one. In both checking
the session cookies and verifying the user’s password, the only verification of the number of
entries done is whether the list is empty or has greater than 0 entries. If it has at least one
entry, then the first entry is assumed to be the intended entry.

This practice can be problematic if an attacker is able to corrupt the query to return multiple
entries in the table, rather than just one. Such a corruption can be detected by verifying that
exactly one entry matches the query and failing if multiple entries match.

Location

This issue is present in two places: where the user name and password are checked in the
XDUser : :authenticate() method and where the session cookies are checked in the
Authentication: :resolveUserFromToken() method.

6.2.3 Report Download REGEX Handling

Summary

Thehtml/controllers/report_builder.php endpoint contains a
download_report operation that requires two additional parameters: a report_loc
parameter and a format parameter. The two parameters are used to construct a path to the
report file, which is read and sent back to the client. Both parameters are validated using a

24

regular expression. However, when the validation fails, the operation defaults to attempting to
read one of two specific files, if they exist.

Description

The validation using a REGEX protects against arbitrary directory traversal attacks. However,
when the REGEX validation fails for the report_loc parameter, the code defaults to
attempting to read either the /tmp/.pdf or /tmp/ .doc file depending on the format
specified. These files are not expected to exist though, nor, if they do, are they likely to contain
valuable information. However, if they do exist, and their permission bits allow the Apache
process to read them, they can be downloaded from the server. It is suggested that the failure
case of such a validation for user input not be a default value, but instead throw an exception
or be explicitly handled.

Location
The problem exists in the operation handler html/controllers/report_builder
/download_report.php.

6.2.4 Bug in User Profile Updating

Summary

Open XDMoD allows a user to update several fields (including first name, last name, email, and
password) from the “Profile” popup in the Open XDMoD web portal. While there is client side
validation of the fields occurring before the requests are sent, there is no server-side validation
on the first name, last name, or email fields. Since the DB schema restricts the length of these
fields by using the varchar([num]) datatype, the lack of server-side validation forces MariaDB to
truncate the values. This can lead to malformed email addresses.

Description

There are two places where user profile information can be set. The first is by an administrator
in the internal dashboard, the second is by the user themselves. When an administrator sets
the profile information for another user, they use the /controllers/user_admin.php
endpoint with the operation set to update_user. When a request is received, all the fields,
except email, are verified to conform to a set of regular expressions. The email field, however,
does not get checked. The email column in the database schema for moddb.Users is
varchar(200). If the email in the request is longer than 200 characters, MariaDB truncates the
email when the entry is inserted or updated.

A similar situation can occur with the endpoint used when a user updates their profile

information. The Open XDMoD webportal performs validations of their input, but the server
does not. Since the columns in the moddb.Users database for first name, last name, and email

25

are varchar(50), varchar(50), and varchar(200) respectively, the values are truncated when
updated in the database.

While the first name and last name were not found to have any functional impact on the
system, the truncation of the email can prevent any communication to the owner of the
account (including for maintenance announcements or password resets).

In addition to truncation of certain fields, the endpoint for users to update their profile
information (PATCH:/rest/v1/users/current), also due to the lack of server side
validation, can cause an internal server error when updating the value for the email. When a
percent encoded value is present in the URL parameters, PHP decodes the value to the
respective character. When the percent encoded value does not correspond to a standard
character, MariaDB is unable to perform any comparisons using the value, causing an
Illegal mix of collations error. Examples of problematic encodings include (but
many were found) %de, %bc, %cd.

Mitigation
These problems can be mitigated by performing server side validation of all user input.

6.2.5 Utility Script File Permissions
Summary
The Open XDMoD utility scripts (xdmod-shredder, xdmod-ingestor, and

xdmod-slurm-helper) have file permissions that allow any user ID on the metrics host to
execute them. However, the scripts will fail when the user does not have adequate permissions

to read the necessary configuration file.

Description
All of the utility scripts have permissions 8755/ -rwxr-Xxr-X that allow any user on the

system to execute the scripts. However, the scripts will fail if the user executing them is not in

the xdmod user group as they will be unable to read the
/etc/xdmod/portal_settings.ini configuration file.

Mitigation

Though there were no apparent security issues found with this approach, it is recommended
that the operating system’s privilege restrictions be used in addition by changing the
permission bits to 8750 /-rwxr-x---.

26

6.3 Places searched with no apparent issues found

We evaluated several other components of the system and did not find any problems. Though
it is impossible to certify that a code is free of vulnerabilities, we have increased confidence in
the security of these parts of the code.

6.3.1 Server Side Validations

Summary

Requests made to the Open XDMoD REST APIs are validated using the cookies sent along with
the requests to determine the user the request was made by. We looked for several issues
including breach of the trust boundary between the server and client, improper authorization
for operations, and bugs in cookie validation.

Location

Files: html/controllers/*
html/internal_dashboard/controllers/*
classes/Rest/Controllers/*

Description

The session cookies sent along with each request identify the user making the request. Once
the user has been identified, the user’s role and access control list is retrieved from the moddb
database. The role and the ACL are used to determine whether the user is authorized to
perform the requested operation.

We checked that operations capable of altering data or revealing protected data performed the
authorization checks correctly and did not allow unauthorized users to perform the operations.
Due to the setup of the custom HTTP controllers in the html directory, we also checked that in
every case the authorization checks could not be bypassed by making requests directly to the
PHP files that perform each operation.

Result
We did not find any apparent issues with the authorization checks that are performed for the
privileged operations.

We confirmed that no operation could be performed by simply bypassing the intended PHP file

and requesting the PHP file for the operation directly. This is due to the PHP files for each
operation not having the necessary include statements in the files themselves.

27

6.3.2 User Input Sanitization

Summary

Open XDMoD stores user input (including profile information such as name, email, and user
name) in its databases for use elsewhere in the portal. We verified that all such user supplied
data was properly sanitized before being displayed in the Open XDMoD portal to prevent
cross-site scripting vulnerabilities.

Description
We focused on the three ways in which user supplied data can be input into the system:

1. Through the text fields in the Open XDMoD portal including the contact page, signup
requests, user profile information, and text fields included in the construction of
reports.

2. Directly through the rest API. By bypassing client side validations and restrictions on the
content of request parameters ,we tested how Open XDMoD sanitizes the content of
request fields that are otherwise a known (or an element of a known set of) value(s).

3. Through the log files processed by either the xdmod-shredder or the
xdmod-slurm-helper script. All the fields were checked for safe handling,
especially the user name and job name fields due to their widespread use in the web
portal.

Result

We inspected the code handling both the input and the use of the user supplied data. We
found that by the time the user supplied data was used in the XDMoD portal, it had been safely
escaped, preventing any XSS attacks. In most cases, the escaping was done only at the point
that the data was about to be used and was done by the Ext.util.Format.htmlEncode
function. We note that the escaping was done by using a library supplied function, rather than
attempting to sanitize the input with custom code. Using a library is often a more robust
solution as libraries are likely to be better tested, more widely used, and cover more corner
cases.

6.2.3 SQL Injections

Summary

Open XDMoD utilizes SQL queries to retrieve, insert, and modify data in the data warehouse, to
modify user information, and to record log messages. We did an in depth exploration of the
construction process of queries made to the databases to ensure that they are not vulnerable
to an injection attack. We did not find any unsafe handling of user input that could lead to an
injection attack.

28

Description

SQL queries are constructed dynamically throughout Open XDMoD and are used in both
handling of requests from the REST API and the processing of data through the ETL pipeline.
Most of the queries that are constructed in response to a request from the REST APl use
prepared statements for all user provided content, and in doing so eliminate the ability for an
injection attack to occur through those fields. However, many of the queries that occur during
the ETL pipeline, and a few that occur due to the REST API, use string interpolation in the
construction of queries for the purpose of parameterizing the table name(s). Since this cannot
be alleviated by using prepared statements, we traced the origin of each variable used to
construct the query to verify that it cannot be tainted by user input.

Result

In every case where string interpolation was used to construct a query we verified that the
value of the variable could not be controlled by the user. In every case, we were able to trace
the origin to either string literals defined higher up the stack, or to the JSON files that define the
ETL pipeline. Since these files are only writable by root, they are considered a trusted source.

29

Appendices

Appendix A: OpenXDMoD-2020-0001
Appendix B: OpenXDMoD-2020-0002
Appendix C: OpenXDMoD-2020-0003

Appendix D: OpenXDMoD-2020-Warning-0001

30

Appendix A

Distribution: Release to XDMoD developers only
Release to public after Dec 1 2020

THE UNIVERSITY _ TRUSTED CI
WISCONSIN 6 THE NSF CYBERSECURITY

MmARISON \ CENTER OF EXCELLENCE

OpenXDMoD-2020-0001

Summary:

The default configuration of Open XDMoD does not encrypt HTTP traffic. This allows attackers to monitor
all traffic between the server and the client. As a result, passwords submitted on login are sent in plain text,
and the xdmod_token cookie can be stolen from any HTTP request after authentication.

Component Vulnerable Versions Platform Availability Fix Available
Open XDMoD All All n/a n/a
Status Access Required Host Type Effort Required Impact/Consequences
Required
Verified Network Any Medium High
Fixed Date Credit
n/a Ben Kinzer
Tan Ruh
Access Required: Network

An attacker needs no special permissions to observe the unencrypted traffic, only access to a packet sniffing
tool (e.g. Wireshark [1]) and a connection to the client or server network.

Effort Required: Medium

To observe the traffic using packet sniffing tools like Wireshark, an attacker must have access to the network
over which the traffic is sent. There are many ways to access an insecure network including physically
tapping network wires/devices, connecting to the same insecure wireless network as a client, and more. The
xdmod_token is sent in plain text with every authenticated request. On login, user credentials are submitted as
plain text form entries.

Impact/Consequences: High

The impact of exploiting this vulnerability depends on the victim whose traffic is being observed. The
attacker will have the login credentials of the victim and thus have the ability to login as the victim and
perform any action on the victim's behalf. In the case of a victim with a manager role, the attacker could
create arbitrary accounts and view XDMoD logs.

Full Details:

Session Hijacking

An attacker can observe the xdmod_token sent with a legitimate client's request. While xdmod_token is
still valid, the attacker can append this cookie to their own malicious requests and thus perform any
action the victim is authorized to perform. Figure 1 shows the xdmod token value that is readable from
the HTTP request header. This figure is a screen capture from Wireshark.

[NON] Wi-Fi: en0

A m i@ mOREO JesEF I S = »
(W] (ip.dst == 192.168.0.250) && (http.request.method == POST) -] Expression.. | +

Protocol | Length Info

niir OUU FUDI /LEDL/VU.L/AUULII/ LUYLIl MIIF/Lel \dPPLLLALLIUII/ ATWWW™ I ULIITULLEIILUUTU)

HTTP 869 POST /controllers/user_interface.php HTTP/1.1 (application/x-www-form-url

HTTP 513 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-ur

HTTP 523 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-ur

HTTP 571 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-ur

HTTP 527 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-ur

HTTP 505 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-ursc.eow
uTrTn EA7 DNCT /aant»allave/matrvin avalarar nhn UTTND/1 1 lannlsnn+rsian/v umn Favm rlanand

CUTHIC U SR U WO U P G Yo Ve N

Referer: http://192.168.0.250:8081/index.php\r\n
v [truncated]lCookie: username-192-168-0-250-8888="2|1:0|10:1587339555|27:username-192-168-
Cookie pair: username-192-168-0-250-8888="2|1:0|10:1587339555|27 :username-192-168-0-250
Cookie pair: PHPSESSID=ivlktsk748f2pg8bj4f9sq94gl

Cookie pair: xdmod_token=7ff53fclbba4bdb7472871c90749834

\r\n
[Full reaquest URI: http://192.168.0.250:8081/controllers/metric explorer.phpl
02d0 3b 20 78 64 6d 6f 64 5Ff 74 6f 6b 65 6e 3d 37 66 ; xdmod_ token=7f

02e@ 66 35 33 66 63 31 62 62 61 34 62 64 62 37 34 37 f53fclbb asbdb747
02f0 32 38 37 31 63 39 30 37 66 34 39 38 33 34 @d ea 2871c907 T49834- -
0300 0d @a 6f 70 65 72 61 74 69 6f 6e 3d 67 65 74 5F - -operat ion=get_
0310 64 61 74 61 26 73 68 6f 77 43 6T 6e 74 65 78 74 data&sho wContext
0320 4d 65 6e 75 3d 66 61 6¢c 73 65 26 63 6f 6e 66 69 Menu=fal se&confi
0330 67 3d 25 37 42 25 32 32 64 61 74 61 5f 73 65 72 g=%7B%22 data_ser
0340 69 65 73 25 32 32 25 33 41 25 37 42 25 32 32 64 ies%22%3 A%7B%22d
0350 61 74 61 25 32 32 25 33 41 25 35 42 25 37 42 25 ata%22%3 A%5B%7B%

Frame (513 bytes) Reassembled TCP (1895 bytes)

O Z A name/value HTTP cookie...p.cookie_pair), 44 bytes® Packets: 2080 - Displayed: 16 (0.8%) - Dropped: 0 (0.0%) © Profile: Default

Figure 1. xdmod_token visible in the headers of an unencrypted HTTP request.

Password Sniffing

If an attack observes a login form POST request, they will be able to see the plain text username and
password. The attacker can then freely login as the victim and perform operations on their behalf.
Figure 2 shows the plain text username and password after being sniffed by Wireshark.

ece
A =

Wi-Fi: enO

NREO Qes=F &=

(W[(ip.dst == 192.168.0.250) && (http.request.method == POST)

Protocol | Length Info

HTTP 530 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-ur

HTTP 574 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www-form-ur

HTTP 856 POST /rest/v@.1/auth/login HTTP/1.1 (application/x-www-form-urlencoded)

HTTP 869 POST /controllers/user_interface.php HTTP/1.1 (application/x-www-form-url

HTTP 513 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-ur

HTTP 523 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-ur

HTTP 571 POST /controllers/metric_explorer.php HTTP/1.1 (application/x-www—form-urlencode

v HTML Form URL Encoded: application/x-www—form-urlencoded

v Form item: "username" = "admin"
Key: username
Value: admin
v Form item: "password" = "admin"
Key: password
Value: admin
02cO 36 63 30 31 39 66 64 34 66 65 62 38 30 34 30 34 6c019fd4 febB804O4
02d0 34 64 61 66 35 38 37 36 30 38 62 66 31 62 22 3b 4daf5876 08bflb";
02e0 20 50 48 50 53 45 53 53 49 44 3d 69 76 31 6b 74 PHPSESS ID=ivlkt
02f0 73 6b 37 34 38 66 32 70 67 38 62 6a 34 66 39 73 sk748f2p g8bj4f9s
0300 71 39 34 67 31 3b 20 78 64 6d 6f 64 5f 74 6f 6b q94gl; x dmod_tok
0310 65 6e 3d 70 75 62 6c 69 63 2d 31 35 38 38 37 38 en=publi c-158878
03206 37 32 37 37 2e 30 33 34 35 2d 35 65 62 32 66 38 7277.034 5-5eb2f8
0330 34 64 30 38 37 30 34 0d 0Qa @d @a 75 73 65 72 ée 4d08704- - - -usern
0340 61 6d 65 3d 61 64 6d 69 6e 26 70 61 73 73 77 6fF ame=admi n&passwo
0350 72 64 3d 61 64 6d 69 6e rd=admin
O Z HTML Form URL Encoded ...ncoded-form), 29 bytes® Packets: 2080 - Displayed: 16 (0.8%) - Dropped: 0 (0.0%) © Profile: Default

Figure 2. Plain text username and password visible in unencrypted POST request.

3. Behavior Monitoring

All of the operations performed by a legitimate user over HTTP can be observed by an attacker,
therefore revealing possibly sensitive information without ever interacting with the system.

Cause:

In both the session hijacking and password sniffing vulnerabilities HTTPS is not enforced for all server

traffic.

Proposed Fix:

All three of the possible exploits above can be mitigated by enforcing HTTPS on all traffic to/from the server.
This could be achieved by configuring Apache by default to only allow HTTPS and by providing a self-

signed certificate until the user replaces it with their own. Also ensure that all cookies are sent with the secure
flag. This flag prevents cookies from being sent over unencrypted channels. More details about the secure flag

are described in [2].

Actual Fix:

n/a.

Acknowledgment:

This work is supported in part by the NSF Cybersecurity Center of Excellence under National Science
Foundation Cyber Infrastructure grant ACI-1547272.

Unconventional Encryption Design

References:

[1] Wireshark. Wireshark Foundation. https://www.wireshark.org/
[2] "Secure Cookie Flag". OWASP Foundation. Web. Accessed 6 May 2020. https://owasp.org/www-
community/controls/SecureFlag

Distribution: Release to XDMoD developers only
Release to public after Dec 1 2020

Appendix B

Distribution: Release to XDMoD developers only
Release to public after Dec 1 2020
e geen 2) TRUSTED CI
WISCONSIN <)

THE NSF CYBERSECURITY
SR EEES S \ —/ CENTER OF EXCELLENCE

OpenXDMoD-2020-0002

Summary:

If an attacker has a normal user account on the metrics server host, they would be able to hijack any
currently active session. Every time a request is made to the XDMoD API, the metrics server attempts
to verify the xdmod_token cookie belongs to a valid session. In querying the moddb database, the query,
and the parameters of the query (including the cookies being checked), are logged to the /var/log
/xdmod/session_manager.log file. This log file is globally readable. By reading the log file an
attacker can see any active session cookies and therefore be able to impersonate any of the active
sessions.

Component Vulnerable Platform Availability Fix Available
Versions
Open XDMoD All All n/a n/a
Status Access Required Host Type Effort Required Impact/Consequences
Required
Verified Account on Host Any Low Low
Fixed Date Credit
n/a Ian Ruh
Access Required: Account on Host

An attacker needs an account on the host running the metrics server or access to the metrics server's
filesystem to be able to read the session_manager.log file, and an HTTP client to hijack an active
session.

As the documentation for XDMoD [1] states that "For security reasons it is suggested, but not required,
that no other services run on the same machine and that access is limited to system administrators," if
the system is setup as suggested by the documentation, this vulnerability would not be easily
exploitable.

However, even if the metrics server were running on a dedicated host, if it were using a shared file
system to store log files then the files would be accessible to anyone else able to access the shared

filesystem.

Effort Required: Low

Assuming an account on the metrics server host or access to the metrics server's filesystem, an attacker
can read the session_manager.log file to get the cookies of all active sessions. They can then hijack
any active session by setting the stolen session cookies on an HTTP client of their own and using that
client to impersonate a legitamate user.

Impact/Consequences: Low

The impact of exploiting this vulnerability depends on the victim whose session is hijacked. Once the
session has been hijacked, the attacker can perform any action on the victim's behalf. In the case of a
victim with a manager role, the attacker could create arbitrary accounts and view XDMoD logs.

This impact was labelled "low" because the attack will come from a user who already has an account
on the system.

Full Details:

Once an attacker has access to the any account on the machine, they are able to read the globally
readable /var/log/xdmod/session_manager.log file to get the cookies for all active sessions. By
setting those cookies in their HTTP client, the attacker can hijack any active session.

Additionally, while critical information is not being logged to them, several other log files are also
globally readable, possibly exposing unintended information to other users of the system. These log
files (all in /var/log/xdmod/) are apache-access.log,apache-error.log, exceptions.log, and
query.log.

Figure 1 shows the session_manager.log file being read by a non-root, non-sudoer user. Figure 2
shows the cookies retrieved from the log file being set in the Firefox dev tools. Figure 3 shows the
successfully hijacked session after the page was reloaded.

® @® baduser@a09acf65ced7:/ Qs3e3

[baduser@Pa®9acfé5ced?7 /1$ stat /var/log/xdmod/session_manager.log
File: '/var/log/xdmod/session_manager.log'
Size: 128481 Blocks: 264 I0 Block: 4096 regular file
Device: 35h/53d Inode: 8006813 Links: 1
Access: (0644/-rw-r—-r——) Uid: (48/ apache) Gid: (48/ apache)
Access: 2020-05-20 18:47:21.711859186 +0000
Modify: 2020-05-26 17:57:03.249031477 +0000
Change: 2020-05-26 17:57:03.249031477 +0000
Birth: -
[baduser@a@9acfé5ced7 /1$ tail -n 7 /var/log/xdmod/session_manager.log
May 26 17:57:03 SESSION_MANAGER [info] 192.168.0.85 QUERY
SELECT user_id
FROM SessionManager
WHERE session_token = :session_token
AND session_id = :session_id
AND init_time = :init_time
PARAMS {":session_token":"ae48f5b7614913e7fcd18dc33f3d6556", ":session_i
d":"lksut8bjtp7sap9e7sd8qnf2a0", " :init_time" :1590515821.8714}
[baduser@Ra@9acfésced7 /15 |§

Figure 1. The session_manager.log file being read by a non-root, non-sudoer user. In
the file, the session_token field corresponds to the xdmod_token cookie, and the
session_id corresponds to the PHPSESSID cookie.

[JOX } [open XDMoD X | +
< c @ © © 192.168.0.250:8080 133%) e @ % neoeeo =
XDMOD Hello, Sign In to view personalized information. ®About &% Roadmap L]Contac(Us ~ @Help -

Summary | Usage | About

Duration: () Previous month v Start: 2020-04-01 [§ End: 2020-04-30 : Refresh
¥ .
Activity Jobs CPU Time (h) Wait Time (h) Wall Time (h) Processors
Users: Pls: Total: Total: Avg (Per Job): Avg (Per Job): Total: Avg (Per Job): Max: Avg (Per Job):
8 4 188 46,828.1 249.09 0.08 2,997.4 15.94 28 15
Cloud - Total CPU Hours by Resource /7| Cloud - Number of Sessions Started by Project -2
® {3 Inspector Console [Debugger N Network {3} Style Editor () Performance 4 Memory [Storage T Accessibility §§ What's New B g - X
» B cache storage V Filter Items + G E
~ B cookies Name Value Domain Path Expires / Max-Age Size HttpOnly Secure SameSi.. LastAccessed
PHPSES... Iksut8bjtp7sap9e7sd8qnf2a0 192.168.0.2.. / Session 35 false false None Tue, 26 May 2020...

» B indexed DB xdmod_t... aed8f5b76f4913e7fcd18dc3313d6556 192168.0.2... / Session 43 | true false None Tue, 26 May 2020..

» B Local storage

» [B session storage

Figure 2. The cookies retrieved from the log file being set in the Firefox dev tools.

[XON } B open XDMoD X |+
< c @ © ® 192.168.0.250:8080 183%) | e ©@ meoeo =
Y = -

L MOD Hello, Admin User (logout) Dashboard _'1, My Profile) About 5% Roadmap Contact Us ») Help ~

Dashboard Usage Metric Explorer Data Export Report Generator Job Viewer About

Jobs - 2020-04-26 to 2020-05-26 Wait Hours - 2020-04-26 to 2020-05-26
Job Identifier XDMoD Tour X
i i Welcome to XDMoD! The XDMoD Tour is a short series of informational tips giving an overview of
\/ ¢ some basic components of XDMoD. Would you like to view the tour now?

Please don't show this message again.

Start Tour Close
¥ 3 inspector Console [Debugger N Network {3} Style Editor () Performance 40 Memory [E) Storage T Accessibility §§ What's New B g - X
» B cache storage V Filter ltems + CE
v B Cookies Name Value Domain Path Expires / Max-Age Size HttpOnly Secure SameSi.. Last Accessed
®) http://192.168.0.250:8080 PHPSES... |ksut8bjtp7sap9e7sd8qnf2a0 192.168.0.2... / Session 35 false false None Tue, 26 May 2020...

» E Indexed DB xdmod_t... ae48f5b76f4913e7fcd18dc33f3d6556 192.168.0.2... / Session 43 | true false None Tue, 26 May 2020...

» B Local storage
» [E) session Storage

Figure 3. The successfully hijacked session after the page was reloaded.

The exploit demonstration shown above was carried out by initially logging in as the "Admin User" on
one machine to create an active session that could be hijacked. From a seperate machine, the
session_manager.log file was accessed by ssh'ing into the metrics server host. On the second machine,
the cookies retrieved from the log files were set as the cookies in Firefox (Figure 2). When the page for
the portal was reloaded (Figure 3), the second machine now had access to the "Admin User" account used
to create the session on the first machine.

Cause: Unsafe File Permissions

This vulnerability was caused by the unsafe file permissions set on the log file.

Proposed Fix:

The vulnerability can be easily fixed by changing the file permissions from 0644/-rw-r--r-- to
0640/-rw-r-—---— .
Actual Fix:

n/a.

Acknowledgment:

This work is supported in part by the NSF Cybersecurity Center of Excellence under National Science
Foundation Cyber Infrastructure grant ACI-1547272.

References:

[1] Open XDMoD 8.5 Hardware Requirements. UBCCR. https://open.xdmod.org/8.5/hardware-
requirements.html

Distribution: Release to XDMoD developers only
Release to public after Dec 1 2020

Appendix C

Distribution: Release to XDMoD developers only
Release to public after Dec 1 2020

THE UNIVERSITY _ TR USTED CI
WISCONS[N 6 THE NSF CYBERSECURITY

MADISON \ CENTER OF EXCELLENCE

OpenXDMoD-2020-0003

Summary:

XDMoD is vulnerable to a Denial of Service (DoS) attack that prevents proper functioning of the
XDMoD portal. Every time a request is made to Apache, an entry is logged to /var/log/xdmod
/apache-access. log containing the timestamp, HTTP method, route, and client information. By
repeatedly sending requests (on any route) to Apache, an attacker can fill up the free space on the file
system partition. This results in the XDMoD web portal failing to properly load due to the
malformed page returned by the server. In addition to XDMoD, any other programs that use the same
file system partition as the log files may also be affected.

Component Vulnerable Platform Availability Fix Available
Versions
Open XDMoD All All n/a n/a
Status Access Required Host Type Effort Required Impact/Consequences
Required
Verified Network Any Low Medium
Fixed Date Credit
n/a Ian Ruh
Access Required: Network

An attacker must be able to address the host that runs the metrics server's web portal.

Effort Required: Low

An attacker needs a scriptable HTTP client. The attacker can then flood the server with requests until
the web portal fails to properly load. The length of time this requires depends on the speed at which
the attacker can make requests, the size of the metrics server's file system partition, and the route(s)
that the attacker requests.

Impact/Consequences: Medium

The impact of exploiting this vulnerability is rendering the XDMoD web portal inoperable and
hindering any users of the file system partition on which the log files reside until disk space can be
freed. However, as the Hardware Requirements section [1] of the documentation recommends "that
no other services run on the same machine," if the recommendation is followed, then the failure of
other services on the system is secondary to the failure of XDMoD.

If /var/log resides on a shared network file partition, then there could be an impact on the
functionality of other programs running on other hosts that share the same network file system
partition.

Full Details:

An attacker with access to the network can use an HTTP client, such as the command line utility
bombardier [2], to repeatedly make requests to the Apache server. Every time a request is made, an
entry is logged to /var/log/xdmod/apache-access.log containing the timestamp, HTTP method,
route, and client information. With a sufficient number of requests, this file can be made to grow
until it uses all free space available on that file system partition. After all free space has been used,
though HTTP requests still succeed, the PHP program generating the response fails to return a
properly formatted HTML document, resulting in a blank page. From the raw return value of the
requests, it is evident that MariaDB is failing with the following error: SQLSTATE[HY000]: General
error: 1 Can't create/write to file ‘/var/tmp/#sql 4db 4.MAI' (Errcode: 28), which
corresponds to 'No space left on device'.

Using a VM with 6 GB of free space after the installation of XDMoD, we verified this attack by
using the command bombardier -c 20 -n 1000000 http://[host]:[port]/[path] from a
separate machine. This command sets up 20 simultaneous connections and makes 1,000,000 requests
to the specified URL. In our testing, we used a trick to increase the speed at which the file system
partition is filled by requesting a path that consists of 100's of random letters. This had two effects:
1.) Since the requested path is logged to apache-access.log on every request, we are able to write
more data for a given request, and 2.) If the path is longer than 255 characters, then Apache will
write the entire path and the error message that the file name is too long to the /var/log/xdmod
/apache-error. log file, therefore nearly doubling the rate at which the file system partition is filled.
On a local gigabit network, we were able to write ~78 MB/s to disk, filling up the remaining free
space in less than three minutes. It may be possible to increase the throughput by using different
options or a different HTTP client, so 78 MB/s should be considered a lower bound.

XDMoD's current method for handling the rotation of log files using logrotate does not prevent
this attack as the time span in which this attack is possible (minutes to hours) is far less than the
period at which logrotate is configured to rotate logs (weekly).

Cause: Unchecked Log File Size

This vulnerability was caused by the unlimited growth of log files.

Proposed Fix:

One option to fix this vulnerability is to use the Apache feature of piped logs and the Apache
provided utility rotatelogs [3], which allows continuous monitoring and control of file size.

An additional mitigation is to isolate log files to their own file system partition. In the case that these

files grow to a large size, this will isolate the effect and reduce the impact. This approach can be used
with any other approach to add an additional layer of protection.

Actual Fix:

n/a.

Acknowledgment:

This work is supported in part by the NSF Cybersecurity Center of Excellence under National
Science Foundation Cyber Infrastructure grant ACI-1547272.

References:

[1] Hardware Requirements. Open XDMoD. https://open.xdmod.org/8.5/hardware-
requirements.html

[2] bombardier. codesenberg/bombardier. https://github.com/codesenberg/bombardier

[3] Piped Logs. Apache HTTP Server Project. http://httpd.apache.org/docs/2.4/logs.html#piped

Distribution: Release to XDMoD developers only
Release to public after Dec 1 2020

Appendix D

Distribution: Release to XDMoD developers only
Release to public after Dec 1 2020

THE UNJ}/ERSITY _ TR STED I
WISCONS[N 6 THE NLSJF CYBERSECURCITY

MADISON \ CENTER OF EXCELLENCE

OpenXDMoD-2020-Warning-0001

Summary:

The current version of XDMoD has three problematic dependencies. Two of the dependencies are
unmaintained and the third is outdated and vulnerable (though it is not clear if it is exploitable in
XDMoD). XDMoD uses the no-longer-maintained HTTP framework Silex that had an end-of-life in
June of 2018 [1]. Although there are currently no publicly known vulnerabilities in Silex, the lack of
active development and maintenance increases the likelihood that vulnerabilities will not be caught
and will not be fixed. XDMoD also relies on PhantomJS, development of which has been suspended
[2], and which has a publicly known vulnerability. Additionally, XDMoD uses an outdated and
vulnerable version of the JasperReports Library Community Edition (where the vulnerability reports
are currently too terse to tell if they affect XDMoD).

Component Vulnerable Platform Availability Fix Available
Versions
XDMoD n/a All Public n/a
Status Access Required Host Type Effort Required Impact/Consequences
Required
Verified n/a n/a n/a n/a
Fixed Date Credit
n/a Ian Ruh
Access Required: n/a
Effort Required: n/a

Impact/Consequences: n/a

The CVE for PhantomJS is not exploitable because the use of PhantomJS in XDMoD is limited. The
only JS file executed by PhantomJS is 1ibraries/phantomjs/generate highchart.js, SO an
attacker would need to modify the file to exploit the vulnerability.

As there are no publicly available details about the CVEs affecting JasperReports, we have not been
able to conclude anything about the impact or consequences for XDMoD.

Full Details:

Silex

The current version of XDMoD uses the HTTP framework Silex, the end-of-life of which passed
in June 2018 and has not been updated since. Additionally, the version in use by XDMoD is
version 1.3.6, while the most recent version is 2.3.0. However, there are no publicly known
vulnerabilities at this time.

PhantomJS

XDMoD relies on PhantomJS as part of generating periodic reports. The development of
PhantomJS has been suspended since March 2018 and there is one publicly available
vulnerability for the current version.

o CVE-2019-17221: Arbitrary File Read Vulnerability
An attacker can craft JS that, when executed, can read arbitrary files on the system. Due to
the limited use of PhantomJS in XDMoD, this vulnerability is not exploitable unless an
attacker already has root privileges.

JasperReports Library Community Edition

XDMoD relies on an outdated and vulnerable version of the JasperReports Library CE as part of
generating periodic reports. The version of JasperReports being used is v3.7.6, while the current
version is v6.12.12 [3]. v3.7.6 suffers from the following publicly disclosed vulnerabilities:

o CVE-2018-18809: Directory Traversal Vulnerability
o CVE-2018-5429: Arbitrary Code Execution Vulnerability
e CVE-2017-5529: Information Disclosure Vulnerability

Due to the lack of publicly available details about the CVEs above, we cannot determine whether
they are exploitable in XDMoD, and, if so, the impact or consequences.

Cause: Unmaintained Software Component

One of the most common security flaws in any software system is the use of components with known
vulnerabilities [4]. As vulnerabilities are discovered and patched in software components, it is the
responsibility of software developers who use those components to ensure that their software
includes the most up-to-date components. In the case when software is no longer being maintained,
even critical vulnerabilities may not be fixed. This exposes dependent software to an increased risk
of attack.

Proposed Fix:

Silex

Using actively maintained software lowers the risk of vulnerabilities going uncaught and unfixed.

The recommendation from the developers of Silex is to migrate to using Symfony and Flex [5],
which continue to be actively maintained and developed.

PhantomJS

Using actively maintained software ensures that publicly known vulnerabilities are fixed and do
not endanger dependent software to being exploited. It is recommended that an actively
maintained alternative be found with equivalent functionality to replace PhantomJS.

JasperReports Library Community Edition

Keeping all libraries and frameworks updated to their most recent versions prevents numerous
vulnerabilities. Jaspersoft has fixed these vulnerabilities in newer versions of JasperReports
Library CE. At the time of writing this report, JasperReports Library CE v6.12.12 is secure from
the vulnerabilities described above.

Acknowledgment:

This work is supported in part by the NSF Cybersecurity Center of Excellence under National
Science Foundation Cyber Infrastructure grant ACI-1547272.

References:

[1]

[2] Phantom]JS. ariya/phantomjs:#15344 https://github.com/ariya/phantomjs/issues/15344
[3]
/jasperreports-library,

[4] "Top 10 2019-A9-Using Components With Known Vulnerabilities". OWASP. Web. Accessed 11
May 2020.

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-

Using Components with Known Vulnerabilities

1] Silex. silexphp/Silex. https://github.com/silexphp/Silex

of-silex

Distribution: Release to XDMoD developers only
Release to public after Dec 1 2020

