
DMesh: Mesh Handling Middleware

Ian Ruh
University of Wisconsin-Madison

Mentor: Abhinandan Jain (Jet Propulsion Laboratory/California Institute of Technology)

Mentor: Aaron Gaut (Jet Propulsion Laboratory/California Institute of Technology)

We developed a new mesh handling middleware for the DARTS [1] simulation engine that unifies
the existing implementations currently used throughout the codebase and extends their functional-
ity to enable additional use cases, including modeling terrain for sampling operations and driving.
As meshes are an integral part of 3D simulations, we rely as much as possible on well-tested and
performant open-source code, including the LibIGL [3] and CGAL [4] libraries, rather than devel-
oping and maintaining custom code. The DMesh middleware intentionally maintains a relatively
low-level API and provides only the foundational operations necessary for more advanced uses. The
low-level API allows the middleware to be built upon for different applications throughout the code
base, including collision detection, terrain modeling, CAD parts, soil modification, and graphics.

Meshes are widely used throughout computer graphics
and simulation software as a discrete representation of
three dimensional objects. The DARTS simulation en-
gine currently uses multiple different implementations of
mesh classes for different applications, including graph-
ics, collision detection, and modeling of sampling oper-
ations. The objective of this work was to design and
implement mesh handling middleware that can be used
for multiple applications and can unify the existing im-
plementations.
In order to support multiple use cases, we designed

the DMesh middleware with several objectives in mind
including maintainability and the flexibility to allow it
to be built upon. To support different specialized appli-
cations, we confined the API to the low-level operations
that would enable more specialized use cases to be built
on top of it rather than attempting to incorporate every-
thing into the core implementation.
In the following sections we first describe the core im-

plementation of the middleware, namely the mesh repre-
sentation in memory and the associated data, and then
we provide an overview of the DMesh API, including
modification of the mesh, set operations (union, inter-
section, etc.), and other utilities. As of the writing of
this paper, the DMesh middleware has begun to be in-
corporated into the rest of the DARTS codebase but is
still being developed.

I. IMPLEMENTATION

The implementation of DMesh followed several pri-
mary design principles, including utilizing existing and
tested open-source code as much as possible, providing a
low-level API that allows DMesh to be utilized for differ-
ent applications throughout the code base, and limiting
the API size of DMesh to only providing the building
blocks and relying on each use case to build the more
specialized functionality they require. The specific design
decisions with regard to how the meshes are represented

in memory, how attributes are associated with the mesh,
and how DMesh interoperates with third-party code are
detailed in the following sections.

A. Mesh Storage

In order to maintain compatibility with the existing li-
braries we wanted to utilize, we store the triangular mesh
internally as a face-vertex list, the same format used by
LibIGL [3]. The face-vertex representation’s simplicity
makes it easy to store in memory and easy to serialize
to disk, as it does not rely on pointers or references to
encode the Mesh’s structure. However, the representa-
tion does limit the efficiency with which some queries
and operations can be carried out including removing a
vertex, which becomes an O(n) operation in the size of
the mesh due to the need to update the indices in each
face of the mesh, and determining the faces adjacent to
a given vertex, which requires a search of the faces.

FIG. 1. Face-Vertex mesh representation example.

B. Attribute Storage

In addition to the geometry of the mesh, the Mesh
class supports storing additional data about the mesh as
a whole and about specific vertices. Per vertex attributes
allow the user to store multiple layers of integer and dou-
ble attributes with the mesh geometry. A layer consists
of a vector of integers or doubles with each value, or a set



2

of values, mapping to a single vertex. When each layer
is constructed, a stride can be defined on the layer that
allows multiple values to be stored for each vertex. This
allows more complex structures to be built on top of the
low level attributes API provided by DMesh.

FIG. 2. In memory storage of vertex attributes.

C. Library Interoperability

To utilize the code provided by third-party libraries
we need to be able to convert to and from the formats
used by the external code. DMesh currently utilizes three
open-source libraries for much of its functionality, Li-
bIGL [3], CGAL [4], and Embree [5]. LibIGL is a general
purpose 3D mesh library that itself relies on CGAL and
Embree for some of its functionality. Because LibIGL
already provides the functions to convert from its face-
vertex mesh format to the half-edge structure used by
CGAL and the mesh data structure used by Embree, we
chose to store the mesh geometry in DMesh in the face-
vertex format.

Each function that utilizes CGAL or Embree has the
added overhead of converting the mesh’s geometry to
their respective format if it has changed. For some oper-
ations, including taking the union, intersection, etc., this
isn’t as important as they are not expected to be called in
real time, but for operations such as ray casting, which
may be called hundreds or more times per second, the
added overhead is significant. To alleviate the cost of
converting we maintain the data structure used by Em-
bree and lazily rebuild it only when the mesh’s geometry
has changed.

The majority of DMesh’s implementation that deals
with the geometry of the meshes utilizes one of the ex-
ternal libraries above, which both simplifies and relieves
the maintenance burden of our code.

II. MESH API OVERVIEW

In the following sections we provide an overview of the
API provided by DMesh and discuss the relevant im-
plementation details. The API can be broken up into
four primary parts: functions for dealing with attributes
and non-geometric mesh data, functions for modifying
the mesh in place, for modifying the mesh out of place,
and sub-meshes.

A. Attributes, Texture Coordinates, and Materials

Vertex attributes are an integral part of meshes, allow-
ing non-geometric data to be mapped onto 3D parts. Ide-
ally, DMesh would support arbitrary vertex attributes,
but to facilitate serialization and simplify the implemen-
tation, only two basic attribute types are supported, inte-
gers and doubles. The intent with the API’s construction
is that a use case that requires more complex attributes,
such as modeling soil properties, can build on top of the
provided API to store and reconstruct the data structure
that it requires, as demonstrated with normal vectors and
colors in the following section.
The attributes and the texture coordinates are both

implemented as vectors with elements that map to the
vertices in the mesh. As attributes also support strides
other than one, allowing multi-dimensional vectors to be
stored in a single attribute layer, the mapping is not nec-
essarily 1-1 between attribute and vertex, but may actu-
ally be a multiple, depending on the stride.
Each mesh has a single material associated with it.

The Material class implementation is based on the As-
simp [2] material implementation, and supports arbitrary
key-value storage for integers, doubles, strings, vectors,
and colors. To facilitate retrieval of common material
properties, it has a static API to construct the keys need
to access common properties in the key-value store.

Vertex Normals and Colors

The vertex normals and colors are actually imple-
mented as normal vertex attributes. Their implemen-
tation demonstrates the intended usage of the low level
attributes API to allow the building of more complex at-
tributes on top. Vertex normals consist of a attribute
layer of doubles with a stride of three, while the colors
consist of an attribute layer with a stride of four (includ-
ing an alpha value). Although both normals and colors
have dedicated functions in the API because of how com-
mon their usage is, they can be accessed and modified
using the same attribute functions as normal attribute
layers.

Attribute Interpolation

DMesh requires that every attribute layer specify an
interpolation mode when created. This allows vertices to
be added without requiring the user to specify all of the
attribute data. There are two interpolation modes sup-
ported for all attributes, nearest neighbor and linear, and
a third mode, spherical linear interpolation (SLERP),
that interpolates between two three dimensional unit vec-
tors. Because SLERP only supports three dimensional
vectors, it can only be used on double attribute layers
with a stride of three. When the stride is not equal to



3

one, both nearest neighbor and linear interpolation per-
form element wise interpolation of the attribute.

B. In Place Modification

The DMesh API supports modification of the mesh’s
geometry and attributes in place, though not all modi-
fications have a constant complexity. In addition to the
position of each vertex, the attributes and texture coor-
dinates associated with each can be modified in constant
time. New vertices and faces can both be added in near
constant time (in reality new vertices are linear in the
number of attribute layers). The largest penalty, and
the one a user should be most aware of, is the cost of
removing a vertex from the mesh. As a consequence of
the face-vertex representation of the mesh used in mem-
ory, when a vertex is removed, every subsequent vertex
is shifted forward, forcing every face to be updated with
the new vertex index.

C. Out of Place Modification

Operations that involve significantly altering the mesh
are instead done out of place and return a new mesh
with the changes. This includes decimating the mesh,
which lets the user specify the target number of faces,
and four basic math operations that take two meshes:
union, intersection, difference, and symmetric difference.
In each case, an entirely new copy of the mesh is re-

turned with all attributes, texture coordinates, and mate-
rials copied over, with all new vertices interpolated, with
all extraneous vertices removed, but without modifying
the original mesh.

FIG. 3. Decimation of sphere from 1600 faces to 400.

D. Sub-Meshes

In many cases the meshes being worked with are far
larger than may be immediately relevant, for example a
mesh modeling a terrain hundreds of meters across is not
all relevant to a rover on the terrain. To increase the
efficiency of some operations on the mesh, sub-meshes
can be used to isolate only the locally relevant section of
the mesh.

By maintaining a representation of the geometry of the
mesh that only includes the isolated section, all geomet-
ric queries are sped up significantly, including ray cast-
ing, volumetric set operations, and point queries. The
sub-meshes provide a window into the parent mesh, as
modifications to the sub-mesh are propagated back to
the parent mesh. As many of the modification opera-
tions are near constant complexity to begin with, this
does not incur a significant cost.

FIG. 4. Tiled sub-meshes with each sub-mesh’s color modi-
fied.

III. MESH UTILITIES

Some utility functions have also been included in
DMesh to support common uses, but were not deemed
essential for inclusion in the Mesh class itself. These con-
sist primarily of functions for creating different geomet-
ric primitives in memory, including spheres, ellipsoids,
planes, cylinders, and prisms.

A. Closing a Mesh

One of DMesh’s intended applications is for model-
ing terrains for both sampling operations and for driving
on. However, the meshes that model terrains are often
not water-tight, meaning they extend out some distance
on the top surface, but then do not close on the under-
side. Some operations, including union and intersection,
can only be performed on meshes that actually have a
volume, so we have included a utility that identifies the
boundary of non-water-tight meshes and closes them by
connecting the boundary to a plane provided by the user.

FIG. 5. Closing of a 2D mesh with waves to 3D volume.



4

IV. IMPORT / EXPORT

The import and export API is based off of the API
used by Assimp [2] and consists of base Importer and
Exporter classes that get derived from to implement im-
porters and exporters for different file formats. This al-
lows additional file formats to be easily incorporated in
the future. Initially, we have implemented derived im-
porters and exporters that support all the formats sup-

ported by Assimp.

V. CONCLUSIONS

The DMesh API should provide the necessities that al-
low it to be adopted in the DARTS codebase in place of
the existing implementations and to enable to to be used
for future applications. The design of the API should let
it be built upon and extended without major modifica-
tions to the implementation.

[1] DARTS https://dartslab.jpl.nasa.gov/

[2] The Open-Asset-Importer Library https://www.assimp.

org/

[3] LibIGL https://libigl.github.io/

[4] The Computational Geometry Algorithms Library https:

//www.cgal.org/

[5] Intel Embree https://www.embree.org/


